Robert C. Martin Series

Clean Archltecture

A Craftsman’s Guide to- i
Software Structure and Design

Robert C. Martin

With contributions by James Grenning and Simon Brown

Foreword by Kevlin Henney
Afterword by Jason Gorman

Scanned with CamScanner

Clean Architecture

A CRAFTSMAN’Ss GUIDE TO SOFTWARE
STRUCTURE AND DESIGN

Robert C. Martin

PRENTICE
HALL

Boston ¢ Columbus * Indianapolis * New York ¢ San Francisco * Amsterdam * Cape Town
Dubai * London « Madrid « Milan * Munich ¢ Paris « Montreal * Toronto * Delhi * Mexico City

Sdo Paulo + Sydney * Hong Kong * Seoul * Singapore * Taipei * Tokyo

Scanned with CamScanner

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which

may include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intles@pearson.com.

Visit us on the Web: informit.com
Library of Congress Control Number: 2017945537
Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a

rcmcv%\l systerfl, or-transmlssion in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions,

contacts within the Pearson Education Global Ri
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-449416-6
ISBN-10: 0-13-449416-4

3 18

request forms and the appropriate
ghts & Permissions Department, please visit

Scanned with CamScanner

This book is dedicated to my lovely wife, my four spectacular children,
and their families, including my quiver full of five grandchildren—who
are the dessert of my life.

Scanned with CamScanner

CONTENTS

Foreword v
Preface Xix
Acknowledgments XXiii
About the Author XXV
PART | Introduction |
Chapter | What Is Design and Architecture? 3
The Goal? 4
Case Study 5
Conclusion 12
Chapter 2 A Tale of Two Values 13
Behavior 14
Architecture 14
The Greater Value 15
Eisenhower’s Matrix 16
Fight for the Architecture 18

Scanned with CamScanner

PART 11 Starting with the Bricks: Programming Paradigms 19
Chapter 3 Paradigm Overview 21
Structured Programming 22
Object-Oriented Programming 22
Functional Programming 22
Food for Thought 23
Conclusion 24
Chapter 4 Structured Programming 25
Proof 27
A Harmful Proclamation 23
Functional Decomposition 2
No Formal Proofs 30
Science to the Rescue 30
Tests 31
Conclusion 31
Chapter 5 Object-Oriented Programming 33
Encapsulation? 34
Inheritance? 37
Polymorphism? 40
Conclusion 47
Chapter 6 Functional Programming 49
Squares of Integers 50
Immutability and Architecture 52
Segregation of Mutability 52
Event Sourcing 54
Conclusion 56
PART Il Design Principles 57
Chapter 7 SRP: The Sing'le Respon§ibi!ity Principle 6l
Symptom 1: Accidental Duplication 63
Symptom 2: Merges 65
Solutions 66
Conclusion 67
C——
viii

B

Scanned with CamScanner

Chapter 8

Chapter 9

Chapter 10

Chapter 11

PART IV

Chapter 12

Chapter |3

OCP: The Open-Closed Principle

A Thought Experiment
Directional Control
Information Hiding,

Conclusion

LSP: The Liskov Substitution Principle
Guiding the Use of Inheritance

The Square/Rectangle Problem

LSP and Architecture

Example LSP Violation

Conclusion

ISP: The Interface Segregation Principle
ISP and Language
ISP and Architecture

Conclusion

DIP: The Dependency Inversion Principle
Stable Abstractions

Factories

Concrete Components

Conclusion

Component Principles

Components

A Brief History of Components
Relocatability

Linkers

Conclusion

Component Cohesion

The Reuse/Release Equivalence Principle

The Common Closure Principle

The Common Reuse Principle

The Tension Diagram for Component Cohesion

Conclusion

CONTENTS

69
70
74
74
75

77
78
79
80
80
82

83
85
86
86

87
88
89
91
91

93

95
96
99

100

102

103
104
105
107
108
110

Scanned with CamScanner

CONTENTS

A R A —

_ 11
Chapter 14 Component Coupling i
The Acyclic Dependencies Principle 18
Top-Down Design . 120
The Stable Dependencies Principle 17
The Stable Abstractions Principle o
Conclusion
PART V Architecture k83
Chapter 15 What Is Architecture!? 135
Development 14
Deployment B8
Operation 138
Maintenance 139
Keeping Options Open 140
Device Independence 142
Junk Mail 144
Physical Addressing 145
Conclusion 146
Chapter 16 Independence 1479
Use Cases 148
Operation 149
Development 149
Deployment 150
Leaving Options Open 150
Decoupling Layers 151
Decoupling Use Cases 152
Decoupling Mode 153
Independent Develop-ability 153
Independent Deployability 154
Duplicat-ion 154
Decoupling Modes (Again) 155
Conclusion 158
X

Scanned with CamScanner

CONTENTS

Chapter |7

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Boundaries: Drawing Lines 159
A Couple of Sad Stories 160
FitNesse 163
Which Lines Do You Draw, and When Do You Draw Them? 165
What About Input and Output? 169
Plugin Architecture 170
The Plugin Argument 172
Conclusion 173
Boundary Anatomy 175
Boundary Crossing 176
The Dreaded Monolith 176
Deployment Components 178
Threads 179
Local Processes 179
Services 180
Conclusion 181
Policy and Level 183
Level 184
Conclusion 187
Business Rules 189
Entities 190
Use Cases 191
Request and Response Models 193
Conclusion 194
Screaming Architecture 195
The Theme of an Architecture 196
The Purpose of an Architecture 197
But What About the Web? 197
Frameworks Are Tools, Not Ways of Life 198
Testable Architectures 198
199

Conclusion

= EETEeEs

Scanned with CamScanner

CONTENTS

Chapter 22 The Clean Architecture 201
The Dependency Rule 203
A Typical Scenario 207
Conclusion 209
Chapter 23 Presenters and Humble Objects 211
The Humble Object Pattern 212
Presenters and Views 212
Testing and Architecture 213
Database Gateways 214
Data Mappers 214
Service Listeners 215
Conclusion 215
Chapter 24 Partial Boundaries 217
Skip the Last Step 218
One-Dimensional Boundaries 219
Facades 220
Conclusion 220
Chapter 25 Layers and Boundaries 22|
Hunt the Wumpus 220
Clean Architecture? 223
Crossing the Streams 226
Splitting the Streams 227
Conclusion 228
Chapter 26 The Main Component 231
The Ultimate Detail 232
Conclusion 237
Chapter 27 Services: Great and Small 239
Service Architecture? 240
Service Benefits? 240
The Kitty Problem 242
Objects to the Rescue 244
xii

Scanned with CamScanner

CONTENTS

Component-Based Services 245

Cross-Cutting Concerns 246

Conclusion 247

Chapter 28 The Test Boundary 249
Tests as System Components 250

Design for Testability 251

The Testing API 252

Conclusion 253

Chapter 29 Clean Embedded Architecture 255
App-titude Test 258

The Target-Hardware Bottleneck 261

Conclusion 273

PART VI Details 275
Chapter 30 The Database Is a Detail 277
Relational Databases 278

Why Are Database Systems So Prevalent? 279

What If There Were No Disk? 280

Details 281

But What about Performance? 281

Anecdote 281

Conclusion 283

Chapter 31 The Web Is a Detail 285
The Endless Pendulum 286

The Upshot 288

Conclusion 289

Chapter 32 Frameworks Are Details 291
Framework Authors 292

Asymmetric Marriage 292

The Risks 293

The Solution 294

xiii

Scanned with CamScanner

ConTENTS

I Now Pronounce You ... 295
Conclusion 295
Chapter 33 Case Study: Video Sales 297
The Product 298
Use Case Analysis 298
Component Architecture 300
Dependency Management 302
Conclusion 302
Chapter 34 The Missing Chapter 303
P‘J.Ck'&ge b\ Layer 304
Package by Feature 306
Ports and Adapters 308
Package by Component 310
The Devil Is in the Implementation Details 315
Organization versus Encapsulation 3le
Other Decoupling Modes 319
Conclusion: The Missing Advice 321
Afterword 323
PART VII Appendix 327
Appendix A Architecture Archaeology 329
Index 379
xiv

Scanned with CamScanner

INTRODUCTION

It doesn’t take a huge amount of knowledge and skill to get a program
working. Kids in high school do it all the time. Young men and women in
college start billion-dollar businesses based on scrabbling together a few lines
of PHP or Ruby. Hoards of junior programmers in cube farms around the
world slog through massive requirements documents held in huge issue
tracking systems to get their systems to “work™ by the sheer brute force of
will. The code they produce may not be pretty; but it works. It works because
getting something to work—once—just isn’t that hard.

Getting it right is another matter entirely. Getting software right is hard. It
takes knowledge and skills that most young programmers haven’t vet
acquired. It requires thought and insight that most programmers don’t take
the time to develop. It requires a level of discipline and dedication that most
programmers never dreamed they’d need. Mostly, it takes a passion for the
craft and the desire to be a professional.

And when you get software right, something magical happens: You don’t need
hordes of programmers to keep it working. You don’t need massive
requirements documents and huge issue tracking systems. You don’t need
global cube farms and 24/7 programming.

Scanned with CamScanner

PART | INTRODUCTION

fraction of the human resources to
d. Defects are few and far

d flexibility are maximized.

When software is done right, it requires a
create and maintain. Changes are simple and rapt
between. Effort is minimized, and functionality an

Yes, this vision sounds a bit utopian. But I've been there; I've seen 1t 1"5’-Pli’e1:i-
I’'ve worked in projects where the design and architecture (?f the system n-nade
It easy to write and easy to maintain. I've experienced projects that required a
fraction of the anticipated human resources. I've worked on systems that had
extremely low defect rates. I've seen the extraordinary effect that good
software architecture can have on a system, a project, and a team. I’ve been to

the promised land.

But don’t take my word for it. Look at your own experience. Have you
experienced the opposite? Have you worked on systems that are so
interconnected and intricately coupled that every change, regardless of how
trivial, takes weeks and involves huge risks? Have you experienced the
impedance of bad code and rotten design? Has the design of the systems
you’ve worked on had a huge negative effect on the morale of the team, the
trust of the customers, and the patience of the managers? Have you seen
teams, departments, and even companies that have been brought down by the
rotten structure of their software? Have you been to programming hell?

I have—and to some extent, most of the rest of us have, too. It is far more
common to fight your way through terrible software designs than it is to
enjoy the pleasure of working with a good one.

e

Scanned with CamScanner

Software Development/Architecture

Clean Architecture

Practical Software Architecture Solutions from the Legendary
Robert C. Martin (“Uncle Bob™)

By applying universal rules of software architecture, you can dramatically improve developer
productivity throughout the life of any software system. Now, building upon the success of his
best-selling books Clean Code and The Clean Coder, legendary software craftsman Robert C. Martin
(“Uncle Bob”) reveals those rules and helps you apply them.

Martin’s Clean Architecture doesn’t merely present options. Drawing on over a half-century of
experience in software environments of every imaginable type, Martin tells you what choices to make
and why they are critical to your success. As you've come to expect from Uncle Bob, this book is
packed with direct, no-nonsense solutions for the real challenges you'll face—the ones that will

make or break your projects.

» Learn what software architects need to achieve—and core disciplines and practices for achieving it

» Master essential software design principles for addressing function, component separation,
and data management

» See how programming paradigms impose discipline by restricting what developers can do

» Understand what's critically important and what's merely a “detail”

» Implement optimal, high-level structures for web, database, thick-client, console, and
embedded applications

» Define appropriate boundaries and layers, and organize components and services

» See why designs and architectures go wrong, and how to prevent (or fix) these failures

Clean Architecture is essential reading for every current or aspiring software architect, systems

analyst, system designer, and software manager—and for every programmer who must execute
someone else’s designs.

Robert C. Martin (“Uncle Bob") has been a programmer since 1970. An acclaimed speaker at
conferences worldwide, his books include The Clean Coder, Clean Code, Agile Software Development,
and UML for Java Programmers. Martin is founder of Uncle Bob Consulting, LLC, and cofounder
(with his son Micah Martin) of The Clean Coders LLC. He has served as editor-in-chief of

The C++ Report, as the first chairman of the Agile Alliance, and as co-founder and leader of
Object Mentor, Inc.

" : “Your Pr s i at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available
informit.com/martinseries | cleancoders.com
Cover image: © Vadim Sadovski/ShutterStock

Text printed on recycled paper ISBN-13: 978-0-13-449416-6
& Textp ycled pap ISBN-10: 0-13-449416-4

@rearson MY i

$34.99 US « $43.99 CANADA

Scanned with CamScanner

