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INTRODUCTION

It doesn’t take a huge amount of knowledge and skill to get a program
working. Kids in high school do it all the time. Young men and women in
college start billion-dollar businesses based on scrabbling together a few lines
of PHP or Ruby. Hoards of junior programmers in cube farms around the
world slog through massive requirements documents held in huge issue
tracking systems to get their systems to “work™ by the sheer brute force of
will. The code they produce may not be pretty; but it works. It works because
getting something to work—once—just isn’t that hard.

Getting it right is another matter entirely. Getting software right is hard. It
takes knowledge and skills that most young programmers haven’t vet
acquired. It requires thought and insight that most programmers don’t take
the time to develop. It requires a level of discipline and dedication that most
programmers never dreamed they’d need. Mostly, it takes a passion for the
craft and the desire to be a professional.

And when you get software right, something magical happens: You don’t need
hordes of programmers to keep it working. You don’t need massive
requirements documents and huge issue tracking systems. You don’t need
global cube farms and 24/7 programming.
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PART | INTRODUCTION

fraction of the human resources to
d. Defects are few and far

d flexibility are maximized.

When software is done right, it requires a
create and maintain. Changes are simple and rapt
between. Effort is minimized, and functionality an

Yes, this vision sounds a bit utopian. But I've been there; I've seen 1t 1"5’-Pli’e1:i-
I’'ve worked in projects where the design and architecture (?f the system n-nade
It easy to write and easy to maintain. I've experienced projects that required a
fraction of the anticipated human resources. I've worked on systems that had
extremely low defect rates. I've seen the extraordinary effect that good
software architecture can have on a system, a project, and a team. I’ve been to

the promised land.

But don’t take my word for it. Look at your own experience. Have you
experienced the opposite? Have you worked on systems that are so
interconnected and intricately coupled that every change, regardless of how
trivial, takes weeks and involves huge risks? Have you experienced the
impedance of bad code and rotten design? Has the design of the systems
you’ve worked on had a huge negative effect on the morale of the team, the
trust of the customers, and the patience of the managers? Have you seen
teams, departments, and even companies that have been brought down by the
rotten structure of their software? Have you been to programming hell?

I have—and to some extent, most of the rest of us have, too. It is far more
common to fight your way through terrible software designs than it is to
enjoy the pleasure of working with a good one.

e
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Software Development/Architecture

Clean Architecture

Practical Software Architecture Solutions from the Legendary
Robert C. Martin (“Uncle Bob™)

By applying universal rules of software architecture, you can dramatically improve developer
productivity throughout the life of any software system. Now, building upon the success of his
best-selling books Clean Code and The Clean Coder, legendary software craftsman Robert C. Martin
(“Uncle Bob”) reveals those rules and helps you apply them.

Martin’s Clean Architecture doesn’t merely present options. Drawing on over a half-century of
experience in software environments of every imaginable type, Martin tells you what choices to make
and why they are critical to your success. As you've come to expect from Uncle Bob, this book is
packed with direct, no-nonsense solutions for the real challenges you'll face—the ones that will

make or break your projects.

» Learn what software architects need to achieve—and core disciplines and practices for achieving it

» Master essential software design principles for addressing function, component separation,
and data management

» See how programming paradigms impose discipline by restricting what developers can do

» Understand what's critically important and what's merely a “detail”

» Implement optimal, high-level structures for web, database, thick-client, console, and
embedded applications

» Define appropriate boundaries and layers, and organize components and services

» See why designs and architectures go wrong, and how to prevent (or fix) these failures

Clean Architecture is essential reading for every current or aspiring software architect, systems

analyst, system designer, and software manager—and for every programmer who must execute
someone else’s designs.

Robert C. Martin (“Uncle Bob") has been a programmer since 1970. An acclaimed speaker at
conferences worldwide, his books include The Clean Coder, Clean Code, Agile Software Development,
and UML for Java Programmers. Martin is founder of Uncle Bob Consulting, LLC, and cofounder
(with his son Micah Martin) of The Clean Coders LLC. He has served as editor-in-chief of

The C++ Report, as the first chairman of the Agile Alliance, and as co-founder and leader of
Object Mentor, Inc.
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